Shipping cost analysis as per distance, terrain and end use
For short and medium range distances, retrofitted pipelines can achieve very low H2 transportation costs (less than or equal to USD 0.1/kg for up to 500km). However, these costs are realizable only if existing pipeline networks are available and suitable for retrofitting (e.g., ensuring leakage prevention), and high volumes of H2 are transported, guaranteeing high utilization rates. For lower or highly fluctuating demand, or to bridge the development to a full pipeline network roll-out, trucking hydrogen – in gaseous or liquid form – is the most attractive option. It can achieve costs of around USD 1.2/kg per 300km. End applications as well as demand size are decisive for choosing between liquid or gaseous hydrogen trucking options.
For longer distances, both new and retrofitted subsea transmission pipelines provide cheaper at scale transportation than shipping, but are not relevant for all regions. Where pipelines are not available, the transportation choice involves a range of different carriers. The three modelled here – LH2, LOHC and NH3 – are the most discussed. Since all three carriers fall into a comparable cost range, the optimal choice depends on the targeted end-use and requirements concerning hydrogen purification and pressure levels.